博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)
阅读量:6158 次
发布时间:2019-06-21

本文共 3011 字,大约阅读时间需要 10 分钟。

Dijkstra算法

  Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

  Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用计算从源顶点1到其它顶点间最短路径的过程列在下表中。

Dijkstra算法的迭代过程:

主题好好理解上图!

以下是具体的实现(C/C++):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*************************************** * About:    有向图的Dijkstra算法实现 * Author:   Tanky Woo * Blog:     www.WuTianQi.com ***************************************/   #include 
using namespace std;   const int maxnum = 100; const int maxint = 999999;   // 各数组都从下标1开始 int dist[maxnum]; // 表示当前点到源点的最短路径长度 int prev[maxnum]; // 记录当前点的前一个结点 int c[maxnum][maxnum]; // 记录图的两点间路径长度 int n, line; // 图的结点数和路径数   void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) {
bool s[maxnum]; // 判断是否已存入该点到S集合中 for(int i=1; i<=n; ++i) {
dist[i] = c[v][i]; s[i] = 0; // 初始都未用过该点 if(dist[i] == maxint) prev[i] = 0; else prev[i] = v; } dist[v] = 0; s[v] = 1;   // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中 // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度 for(int i=2; i<=n; ++i) {
int tmp = maxint; int u = v; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!s[j]) && dist[j]
=1; --i) if(i != 1) cout << que[i] << " -> "; else cout << que[i] << endl; }   int main() {
freopen("input.txt", "r", stdin); // 各数组都从下标1开始   // 输入结点数 cin >> n; // 输入路径数 cin >> line; int p, q, len; // 输入p, q两点及其路径长度   // 初始化c[][]为maxint for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) c[i][j] = maxint;   for(int i=1; i<=line; ++i) {
cin >> p >> q >> len; if(len < c[p][q]) // 有重边 {
c[p][q] = len; // p指向q c[q][p] = len; // q指向p,这样表示无向图 } }   for(int i=1; i<=n; ++i) dist[i] = maxint; for(int i=1; i<=n; ++i) {
for(int j=1; j<=n; ++j) printf("%8d", c[i][j]); printf("\n"); }   Dijkstra(n, 1, dist, prev, c);   // 最短路径长度 cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;   // 路径 cout << "源点到最后一个顶点的路径为: "; searchPath(prev, 1, n); }

输入数据:

5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:

1.HDOJ 1874 畅通工程续

2.HDOJ 2544 最短路

转载:

你可能感兴趣的文章
Crontab中shell每分钟执行一次HDFS文件上传不执行的解决方案
查看>>
ios NSAttributedString 具体解释
查看>>
debian 安装 php 遇到的问题解决
查看>>
BDB (Berkeley DB)数据库简单介绍(转载)
查看>>
Java Swing 探索(一)LayoutManager
查看>>
数据库原理 知识点总结
查看>>
3D数学读书笔记——矩阵进阶
查看>>
C柔性数组
查看>>
Python 类继承,__bases__, __mro__, super
查看>>
(十五)WebGIS中平移功能的设计和实现
查看>>
matlab练习程序(三阶张量T-QR分解)
查看>>
百钱买百鸡
查看>>
EditText图文混排
查看>>
Mysql,ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'mysql'
查看>>
html5 audio音频播放全解析
查看>>
Android 安全提示 笔记
查看>>
android中的textview显示汉字不能自动换行的一个解决办法
查看>>
程序局部性原理感悟
查看>>
js中document.write()使用方法
查看>>
随机生成50个字段的elasticsearch的测试程序输入
查看>>